Detergents induce raft-like domains budding and fission from giant unilamellar heterogeneous vesicles: a direct microscopy observation.
نویسندگان
چکیده
The effect of detergents on giant unilamellar vesicles (GUVs) composed of phosphatidylcholine, sphingomyelin and cholesterol and containing liquid-ordered phase (l(o)) domains was investigated. Such domains have been used as models for the lipid rafts present in biological membranes. The studied detergents included lyso-phosphatidylcholine, the product of phospholipase A2 activity, as well as Triton X-100 and Brij 98, i.e. detergents used to isolate lipid rafts as DRMs. Local external injection of each of the three detergents at subsolubilizing amounts promoted exclusion of l(o) domains from the GUV as small vesicles. The budding and fission processes associated with this vesiculation were interpreted as due to two distinct effects of the detergent. In this framework, the budding is caused by the initial incorporation of the detergent in the outer membrane leaflet which increases the spontaneous curvature of the bilayer. The fission is related to the inverted-cone molecular shape of the detergent which stabilizes positively curved structures, e.g. pores involved in vesicle separation. On the other hand, we observed in GUVs neither domain formation nor domain coalescence to be induced by the addition of detergents. This supports the idea that isolation of DRM from biological membranes by detergent-induced extraction is not an artifact. It is also suggested that the physico-chemical mechanisms involved in l(o) domain budding and fission might play a role in rafts-dependant endocytosis in cells.
منابع مشابه
Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems.
Model systems such as black lipid membranes or conventional uni- or multilamellar liposomes are commonly used to study membrane properties and structure. However, the construction and dimensions of these models excluded their direct optical microscopic observation. Since the introduction of the simple method of liposome electroformation in alternating electric field giant unilamellar vesicles (...
متن کاملPhospholipase A2 promotes raft budding and fission from giant liposomes.
Cellular processes involving membrane vesiculation are related to cellular transport and membrane components trafficking. Endocytosis, formation of caveolae and caveosomes, as well as Golgi membranes traffic have been linked to the existence and dynamics of particular types of lipid/protein membrane domains, enriched in sphingolipids and cholesterol, called rafts [Nature 387 (1997) 569; Trends ...
متن کاملLipid rafts reconstituted in model membranes.
One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers a...
متن کاملLarge-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.
The membrane raft hypothesis postulates the existence of lipid bilayer membrane heterogeneities, or domains, supposed to be important for cellular function, including lateral sorting, signaling, and trafficking. Characterization of membrane lipid heterogeneities in live cells has been challenging in part because inhomogeneity has not usually been definable by optical microscopy. Model membrane ...
متن کاملMaking giant unilamellar vesicles via hydration of a lipid film.
This unit describes protocols for making giant unilamellar vesicles (GUVs) based on rehydration of dried lipid films. These model membranes are useful for determining the impact of membrane and membrane-binding components on lipid bilayer stiffness and phase behavior. Due to their large size, they are especially amenable to studies using fluorescence and light microscopy, and may also be manipu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemistry and physics of lipids
دوره 136 1 شماره
صفحات -
تاریخ انتشار 2005